
Extreme Genera and Other Techniques of
Graph Embeddings

Eion Blanchard, Esther Hunt∗

August 11, 2016

Abstract

This paper presents a relatively quick strategy to find an upper bound
on the minimum genus of circular graph, details a direction of research
in electrical networks by applying Y -∆ transformations to embeddings
of complete graphs, and begins to develop an algorithm for depicting a
maximum embedding of a graph that is both intuitive and reliable without
trial-and-error.

Contents
1 Quickly Bounding the Minimum Genus of a Circular Graph 3

1.1 3-to-1 Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Pendant-Spike Adjacency Count . . . . . . . . . . . . . . . . . . 5
1.3 3-to-1 Graph, revisited . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Triangle Faces in Complete Graphs 9
2.1 Complete Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Combinatorial Rotation Systems . . . . . . . . . . . . . . . . . . 12
2.3 Deriving the Faces of an Embedding . . . . . . . . . . . . . . . . 13

3 Drawing a Maximum Embedding 15
3.1 An Algorithm for the Drawing . . . . . . . . . . . . . . . . . . . 16
3.2 Algorithmic Shortcomings . . . . . . . . . . . . . . . . . . . . . . 20

4 Gauging the Circular Planarity of an Electrical Network from
its Response Matrix 21
4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.2 The 4 Boundary Vertex Case . . . . . . . . . . . . . . . . . . . . 22
4.3 The 5 Boundary Vertex Case . . . . . . . . . . . . . . . . . . . . 23
4.4 Extension to Larger Systems . . . . . . . . . . . . . . . . . . . . 24

∗This paper was written as a part of the University of Washington 2016 Mathematics REU
under the direction of Dr. Jim Morrow.

1



5 Directions for Further Research 24

References 25

2



1 Quickly Bounding the Minimum Genus of a
Circular Graph

This section is motivated by seeking the minimum genus of a graph with bound-
ary such that the embedding is circular. This is the analogue of circular planar
graphs on surfaces of higher genera. We aim here to generalize the Cut Point
Lemma for electrical networks. The present authors assume the reader bears
familiarity with representing electrical networks as graphs with boundary, as
detailed in the book that serves as the crux of the University of Washington
Mathematics REU [3].

Definition 1.1. The minimum genus of a graph G is the minimum g such that
G can be embedded in a surface of genus g. That is, G is drawn without edge
crossings.

Definition 1.2. A minimum embedding of a graph G is an embedding of G on
a surface of the minimum genus of G.

Definition 1.3. A graph G with boundary ∂V is g-circular if g is the minimum
genus such that G has an embedding on a surface of genus g upon which a
boundary circle may be drawn connecting each vertex in ∂V such that every
edge of G exists on the same side of the circle and does not cross it.

Remark 1.4. Circular planarity and 0-circularity are equivalent.

For convenience in the following technique, we now contrive and name a
structure for graphs inspired by previous work in the University of Washington
Mathematics REU, notably Nick Reichert [8].

Definition 1.5. Given a graph G with boundary ∂V , the appended graph G’
is G with a new vertex appended such that new edges are drawn between the
appended vertex and each boundary vertex in ∂V .

A helpful device for ensuring that a graph is circular is seeking a minimum
genus embedding of the appended graph. Since rotation systems may be defined
locally at each vertex, any such embedding can be manipulated to see that when
the appended vertex and edges are removed, a boundary circle may be drawn
cleanly around the boundary vertices according to the rotation system around
the appended vertex. For a more technical explanation of rotation systems,
consult Section 2.2.

1.1 3-to-1 Graph
The following work was directly inspired by seeking the minimum circular genus
of the 3-to-1 graph, drawn below with labels 0 to 13 on the boundary vertices
and 15 to 22 on the interior vertices. Notice the thrice-identified vertices 0 and
1 on the wings of the graph [10].

3



0

00

1

11

2

3

4

5 67

8

9 10 11

12 13

15

16

17 18 19 20 21 22

We first seek an embedding of the 3-to-1 graph. We simply identify the 0
and 1 vertices, but notice that the graph is not planar, so we add a handle that
corresponds to the edge crossing.

0

1

11

15

17

Clearly the minimum genus of the 3-to-1 graph is 1. Now we consider the
appended 3-to-1 graph, which includes an appended vertex 14 that is adjacent
to each boundary vertex 0 to 13. The diagram of the appended 3-to-1 graph
is cumbersome, so we observe the equivalent technique of seeking the minimum
genus embedding of the original graph with the restriction that every boundary
vertex is incident to some common face.

Generally, this is not possible on the original graph’s minimum genus, so we
must move up in genus; this motivates the next subsection. Essentially, we try
to add as few handles through edges as possible so that one face touches each
boundary vertex. In doing so, we exhibit an easily found upper bound on the

4



minimum genus. The resulting number may very well be the actual minimum
genus, but this procedure does not ensure this, as we will later demonstrate
with the 3-to-1 graph drawn above.

1.2 Pendant-Spike Adjacency Count
First, we recall some terminology from electrical networks.

Definition 1.6. A boundary pendant is a boundary vertex with degree one
whose only neighbor is another boundary vertex.

Definition 1.7. A boundary spike is a boundary vertex with degree one whose
only neighbor is an interior vertex.

Notice that in an embedding, since boundary pendants and spikes are leaves
in the graph, each will jut out into a face that is homeomorphically unaffected
by contraction of the pendant or spike. Now we introduce terminology that will
make clear the culminating theorem of this subsection. Recall that every edge
in an embedding lies incident on either one or two faces.

Definition 1.8. For unique faces f and f ′ of a graph embedding, f ′ is a face
neighbor of f if some edge lies incident to both f and f ′.

Definition 1.9. For a face f in a graph embedding Π, the pendant-spike ad-
jacency count η(f,Π) of f is the number of face neighbors of f that contain
boundary pendants or boundary spikes. We impose that f does not contribute
to this count if f contains boundary pendants or spikes.

Clearly, η is not graph-invariant, but rather depends on the rotation system
detailed, since the face neighbors may vary over different embeddings of the
same graph on the same surface if multiple embeddings exist in a given genus.

We now seek to attain a bound for the minimum genus of a circular graph.
If we consider a face f in some graph embedding Π, we construct the appended
graph by placing the appended vertex on f . We must add a handle for each
face neighbor of f that contributes to η(f,Π).

Theorem 1.10. Let ∆g represent the increase in genus when a graph is ap-
pended as detailed by Definition 1.5 on an embedding Π. If the appended vertex
is added on face f , then ∆g ≥ η(f,Π).

Proof. We notice that ∆g is composed of the genus increase induced by adding
handles as described to connect the face neighbors counted in η, as well as the
genus increase induced by connecting any faces containing remaining boundary
vertices. We notate the former count by ∂g. The latter number is nonnegative
(though we aim for it to be zero in application of this theorem). So ∆g ≥ ∂g.

Let G be a graph and G′ be its appended graph with the appended vertex
on face f in the embedding Π. Let V , E, F , and g (V ′, E′, F ′, and g′) count
the number of vertices, edges, and faces, and the genus, respectively, of G (G′).

5



For brevity, let n = η(f,Π). We index the face neighbors f1, f2, . . . , fn of f .
Let ∂Vi denote the number of boundary vertices incident to fi. Let the boundary
pendants and boundary spikes on fi be counted by pVi and sVi respectively.

When the appended vertex is added on f and we connect the boundary
vertices, we inspect the change on the face count, seeking F ′ as a function of
F . We must add a handle to connect each face neighbor that contributes to η.
For each i, we decrement the face count by adding this handle and merging f
with fi. Note here that the theorem seeks to establish that these are the only
handles we need to add on any face neighbors of f .

Drawing edges from the appended vertex through the handle to each bound-
ary vertex on the border of the face (i.e. not yet connecting the boundary pen-
dants and spikes), we add (∂Vi−pVi−sVi)−1 faces since there are ∂Vi−pVi−sVi
such vertices but the first additional edge does not create a new face due to
the handle. Now we connect the boundary pendants and spikes, adding back
pVi + sVi. We do not add edges to boundary vertices that have been already
connected if a boundary vertex is incident to more than one face neighbor. Then
for each i, we add ∂Vi − rVi − 2 where rVi is the repeated boundary correction
factor. So

∑n
i=1(∂Vi − rVi) = ∂V .

Summing over the faces, we see that
∑n
i=1(∂Vi − rVi − 2) = ∂V − 2n. So

F ′ = F + ∂V − 2n− 1 since the first added edge of the scheme does not add a
face (instead, it essentially renders the appended vertex into a pendant).

We then plug this formula for F ′ into Euler’s equation. Obviously, V ′ = V +1
since we added a vertex and E′ = E + ∂V since we added an edge for every
boundary vertex in the original graph. By convention, g′−g = ∂g since we only
inspect changes on f and its face neighbors. Thus:

2− 2g′ = V ′ − E′ + F ′

= (V + 1)− (E + ∂V ) + (F + ∂V − 2n− 1)

= (V − E + F ) + (1− ∂V + ∂V − 2n− 1)

= (2− 2g)− 2n

⇐⇒ 2n = 2g′ − 2g

⇐⇒ n = ∂g

So η(f,Π) = n = ∂g implies η(f,Π) = ∂g. Thus, the change in genus
required by the above procedure is indeed covered by the handles added to enter
each face neighbor of interest. Accounting for any boundary vertices incident
to neither f nor any of its face neighbors, then, we conclude η(f,Π) ≤ ∆g as
desired.

Remark 1.11. If a graph has minimum genus g and is g′-circular, then ∆g ≥
g′ − g by the notation in Theorem 1.10.

After the procedure in the proof is followed, we greedily add handles on our
embedding to connect the unmet boundary vertices so that we realize the genus
of g + ∆g. Utility of this theorem demands that we find an embedding Π that
optimizes the following two goals on the selected face f :

6



1. Maximize the number of boundary vertices incident to f and the face
neighbors of f .

2. Minimize the number of face neighbors of f that have incident boundary
vertices.

Each boundary vertex not included in the former goal may require its own
handle, and each face neighbor of f containing a boundary vertex in the latter
goal will require a handle. The more closely that the embedding achieves these
goals, the better of an upper bound g + ∆g will be for g′ where the graph G is
g′-circular.

Remark 1.12. To recap and debrief the notation used in this section:

• The graph G has minimum genus g.

• The appended graph G′ has minimum genus g′.

• G is g′-circular.

• By the procedure in the proof of Theorem 1.10 to get ∆g for a face f in
the embedding Π of G, g + ∆g is the upper bound on g′ dependent on
η(f,Π) from Definition 1.9.

1.3 3-to-1 Graph, revisited
We employ the proof technique on the 3-to-1 graph to show that g′ ≤ 4.

We begin the proof procedure with the embedding of the 3-to-1 graph in a
surface of genus 1 as above, where the pre-existing handle corresponds to the
labeled handle 0. We let f be as labelled, upon which 6 boundary vertices lay
incident before we added any handles.

Note that the way the faces of this embedding are drawn with interior ver-
tices, it is equivalent to consider f1 and f2 as face neighbors of f with boundary
spikes/vertices. The face f3 already meets criteria.

We add handle 1 to merge f with f1. This face now bears 9 boundary
vertices. We add handle 2 to merge f ∪ f1 with f2, so the face now bears 13
boundary vertices. We add handle 3 to merge f ∪f1∪f2 with f3 to complete the
face now containing all 14 boundary vertices. This is equivalent to the appended
3-to-1 graph now.

7



0

1

2

3
f

f1

f2

f3

We now observe that the appended 3-to-1 graph can be embedded on a
surface of genus 3, as obtained by hand-drawing trials.

Observe that each boundary vertex lies incident on a common face. So where
g′ is the minimum genus of the appended 3-to-1 graph or where the 3-to-1 graph
is g′-circular, we have shown that g′ ≤ 3.

Though the earlier proof strategy obviously did not provide the best value
for the g′ value we seek for the 3-to-1 graph, it did provide a quick way to get
a reasonable upper bound. We proceeded from a pre-existing drawing, while
procuring a more accurate value required intuition and myriad re-drawings of
the graph.

8



We conclude this section with a conjecture that the above drawing is indeed
the realization of the appended 3-to-1 graph’s minimum genus.

Conjecture 1.13. The 3-to-1 graph is 3-circular.

This conjecture is equivalent to asserting equality in the already-established
g′ ≤ 3. The present authors posit that a method of proof would be exhausting
all embeddings of the appended 3-to-1 graph and showing that none exist on
surfaces of genera less than 3 and that a method of disproof would be drawing
an embedding (or, equivalently, defining a combinatorial rotation system) that
lies on a surface of genus less than 3 (probably 2, if any).

A strategy for a counterexample would be to follow the goals set above by
forcing a face with many boundary vertices and finding a 1-embedding such,
then adding just one (or zero) handles to adjoin a face neighbor incident to
every remaining boundary vertex, if any.

2 Triangle Faces in Complete Graphs
We begin with the following conjecture to motivate the section.

Conjecture 2.1. Every graph that contains a 3-cycle and can be embedded with
at least two faces in a surface of given genus can be embedded in that surface
with a triangle face.

This is posed toward applying a Y -∆ transformation on the triangle face in
the embedding to decrement the number of faces while maintaining equivalence
as an electrical network.

We begin with some standard definitions and theorems that will prop up
later discussion.

Definition 2.2. A 2-cell is a two-dimensional region that is homeomorphic to
the open unit disk.

Definition 2.3. A 2-cell embedding of a graph G is one in which each face is a
2-cell.

Definition 2.4. The maximum genus γM (G) of a graph G is the highest genus
of a surface on which G has a 2-cell embedding.

Notice the abuse of nomenclature by the following two definitions, which
may be distinguished by context or the number of arguments. Generally, the
terms deficiency or Xuong deficiency will be used to refer to the latter, as it is
a combinatorial invariant on a given graph.

Definition 2.5. The Xuong deficiency ξ(G,T ) of a spanning tree T in a graph
G counts the number of connected components in the cotree of T in G that have
an odd number of edges.

Definition 2.6. The Xuong deficiency ξ(G) of a graph G is the minimum value
that ξ(G,T ) takes over all spanning trees T of G.

9



Definition 2.7. The Betti number β(G) of a graph G counts the number of
cotree edges of a spanning tree in a graph. This is also called the cycle rank of
G and is easily computed β(G) = |E| − |V | + 1 since every spanning tree has
|V | − 1 edges.

Theorem 2.8. (Xuong, 1979) [13] Let G be a graph. Then

γM (G) =
β(G)− ξ(G)

2
.

Definition 2.9. A graph is upper-embeddable if it may be embedded (on a
surface) with one or two faces.

Definition 2.10. The cotree G−T of a tree T in a graph G is the subgraph of
G containing all vertices of G and every edge of G not included in T. Observe
that the cotree is not necessarily connected and thus is not necessarily a tree.

To make progress toward Conjecture 2.1, we prove the following lemma
regarding upper-embeddability.

Lemma 2.11. (Xuong, 1979) [14] A graph with two disjoint spanning trees is
upper-embeddable.

Proof. Let G be a graph. Since minimizing the face count is the same as max-
imizing the (essential) genus of an embedding, it will suffice to show that the
Xuong deficiency ξ(G) of G is either 0 or 1.

Let T and T ′ be disjoint spanning trees of G. Since T and T ′ are disjoint,
T ′ is in the cotree G− T of T . T ′ is spanning, so G− T is connected.

We observe that the Xuong deficiency on spanning trees is non-negative and
maintains parity (i.e. even or odd) across all spanning trees of a given graph.
Since G− T is connected, then, it has at most one component with odd edges.
Hence ξ(G,T ) = ξ(G) is either 0 or 1 as desired.

2.1 Complete Graphs
We now inspect complete graphs. Recall that the complete graph on n vertices
is notated by Kn and is characterized by each vertex being adjacent to every
other vertex in the graph.

Theorem 2.12. All complete graphs are upper-embeddable.

Proof. We will first exhibit complete graphs K1, K2, and K3. We then will
employ Lemma 2.11 on the general Kn graph where n is greater than 3.

K1 is a lone vertex and K2 consists of a single edge connecting two vertices,
so the upper-embeddability of each of these graphs is trivial. K3 is a 3-cycle,
and its on the plane contains two faces, so it is trivially upper-embeddable.

We now let n > 3 and consider Kn. Label the vertices 1, . . . , n. We will ex-
hibit two disjoint spanning trees. Let T be first composed of the edges (1, 2) and
(2, 3). Add edges between 3 and each of the vertices 4, . . . , n in star-like fashion

10



on 3. T is now a spanning tree. So T = {(1, 2), (2, 3), (3, 4), (3, 5), . . . , (3, n)}.
Let T ′ be first composed of the edges (1, 3) and (2, 4). Add edges in a path
from 4 to 1 along the remaining vertices. T ′ is now a spanning tree. So
T ′ = {(1, 3), (2, 4), (4, 5), . . . , (5, n), (n, 1)}. T and T ′ are disjoint spanning trees
of Kn, so by Lemma 2.11, Kn is upper-embeddable for n > 3.

Hence, all complete graphs are upper-embeddable.

An example of the construction used in the proof of Theorem 2.12 is given
for the complete graph on 7 vertices, K7.

Example 2.13. Consider K7. On the left, we construct T as in the proof of
Theorem 2.12; on the right, T’.

1

2

3

4 5

6

7

1

2

3

4 5

6

7

We view T in solid edges and T’ in dashed edges in the same drawing to
quickly verify that these spanning trees are indeed disjoint.

1

2

3

4 5

6

7

Hence, K7 is upper-embeddable by Lemma 2.11.

We use Theorem 2.8 and Theorem 2.12 to construct Table 1, which demon-
strates the relations between number of vertices n, Betti number β(Kn), Xuong
deficiency ξ(Kn), and maximum genus γM (Kn) for the first fifteen complete
graphs.

11



n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
β(Kn) 0 0 1 3 6 10 15 21 28 36 45 55 66 78 91
ξ(Kn) 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1
γM (Kn) 0 0 0 1 3 5 7 10 14 18 22 27 33 39 45

Table 1: computations on Kn for 1 ≤ n ≤ 15.

Observe that for complete graphs, the Betti number, Xuong deficiency, and
maximum genus are governed by the following equations:

β(Kn) =

(
n

2

)
− n+ 1 =

(n− 2)(n− 1)

2

ξ(Kn) =
(−1)b

n+1
2 c + 1

2

γM (Kn) =

⌊(
n
2

)
− n+ 1

2

⌋
=

⌊
(n− 2)(n− 1)

4

⌋
.

Theorem 2.14. The complete graph on n vertices Kn such that every vertex
is in the boundary is g-circular where Kn+1 has minimum genus g.

Proof. A proof of this theorem may employ the appended graph from Definition
1.5 and is left to the reader.

Further work will integrate triangle faces and star-K strategies into analysis
of complete graphs.

2.2 Combinatorial Rotation Systems
While it is most intuitive to represent embeddings as drawings of the graph
on a two-dimensional representation of the surface, this becomes cumbersome
and ambiguous as the average vertex degree increases or the genus increases, so
we seek a more technical alternate. We turn to combinatorial (as opposed to
coordinate, which will not be presently discussed) rotation systems.

Observe that in the drawing of a graph embedding, the characterizing qual-
ities are not the paths of the edges between adjacent vertices, but rather the
local arrangement of incident edges around each vertex. We will inspect simple
graphs, so for a fixed vertex, the incident edges each connect to a unique adja-
cent vertex, Hence, we may encode the order for this vertex as a permutation
in cycle notation of the adjacent vertices.

Definition 2.15. A combinatorial rotation system for a graphG is a set of cyclic
permutations such that each vertex of G is assigned an ordering of its adjacent
vertices. Conventionally, a rule (i.e. either clockwise or counter-clockwise) is
associated with the system to make it clear on which side of an adjacent vertex
the next vertex in the permutation lies.

12



Remark 2.16. The present authors will use the counter-clockwise rule for their
combinatorial rotation systems unless otherwise noted.
Remark 2.17. Additionally, combinatorial rotation systems may be extended to
include an extra dimension for each edge that denotes a twist or the lack thereof,
which is necessary to define embeddings on non-orientable surfaces (character-
ized by their demigenus or Euler genus) such as the Klein bottle. Only orientable
surfaces (characterized by their genus) are included in the current scope of this
paper, so we eschew this additional parameter. Consult Alex Waldrop’s pa-
per from the University of Washington REU in 2011 for combinatorial rotation
systems that incorporate twists. [12].

Definition 2.18. A dart is a directed edge that, with its negative, corresponds
to an undirected edge in a graph. So each edge in a graph gives way to two
directed edges, the darts. A dart is represented by the labels of its endpoints
with its starting vertex written first (ex. the dart from vertex 3 to vertex 8 is
denoted 3–8).

2.3 Deriving the Faces of an Embedding
We may construct the faces of a graph embedding according to a given combi-
natorial rotation system and its associated rule. From these faces, we construct
the surface upon which the graph is embedded. The algorithm for finding the
faces for this purpose is presented below.

We will notate a face induced by darts moving counterclockwise along the
boundary as [x–y–z–· · · –x]. Let a graph G have vertices labeled 1 through n.

1. We select an arbitrary unused dart x–y from vertex x to vertex y.1

2. We initiate the face fragment [x–y) and inspect the initial dart x–y.

3. To proceed along the dart x–y on the face fragment [x–y), we consult
the cyclic permutation for y and take the successor of x. Vertex z is the
y-successor of x where the permutation for y is (· · ·xz · · · ).

4. Next, we add the dart y–z to the face fragment, which becomes [x–y–z).

5. We repeat steps 3 and 4 on this next dart y–z unless we arrive at the
initial dart x–y used to construct this face (i.e. when we find some vertex
of which y is the x-successor).2

6. Without adding the repeated initial dart, the face fragment is now a com-
plete face [x–y–z–· · · –x]. If each dart from the graph is accounted for on
the complete faces, we are done. If any darts remain to be used, we repeat
the process in steps 1 through 5.

1The present authors prefer to start with the first unused dart in the intuitive ordering of
darts 1–2, . . . , 1–n, 2–1, 2–3, . . . as they exist in the graph.

2Note that vertices are likely to be repeated on a given face; we do not stop, but rather
keep going until a dart is repeated. No dart other than the initial dart on that face will be
repeated.

13



7. All faces are now complete, and all darts have been included. The al-
gorithm is complete, and we have a set of faces derived from the given
combinatorial rotation system, as desired.

Remark 2.19. If we seek a drawing of the graph embedding, we take the faces
(which have darts as boundary) from the algorithm and piece them together
such that each dart x–y is sewn into its negative dart y–x so that each vertex
x is identified and each vertex y is identified. This will build a surface of the
embedding’s genus, which can be computed once the number of faces is known
via the Poincaré formula, with edges of the graph as seams.

We will now exemplify the algorithm by constructing the faces of a graph
embedding from a combinatorial rotation system.

Example 2.20. We will assemble the faces corresponding to the following com-
binatorial rotation system for K5 and use the face count to compute the genus.

1: (2 5 4 3)
2: (1 4 3 5)
3: (1 4 5 2)
4: (1 5 3 2)
5: (1 2 3 4)

We begin the first face with the dart 1–2. We observe that the 2-neighbor
of 1 is 4, so we look next at the dart 2–4 and continue this procedure until we
return to the dart 1–2. At that point, we have the face [1–2–4–1–3–4–2–3–1].

Next, we take initial dart 1–4. This face is [1–4–5–1].
Now taking initial dart 1–5, we discover the face [1–5–2–1].
Similarly, the initial dart 2–5 gives us the face [2–5–3–2].
We lastly take the initial dart 3–5 to procure the final face [3–5–4–3].
With these 5 faces assembled, we plug in the face count with vertex count

of 5 and edge count of 10 into the Poincaré formula to compute that the genus
of this embedding is g = 1.

We present the faces as polygons with darts as boundary below.

1

4 5

1

5 2
2

5 3

3

5 4

14



1
2

4

1
3

4

2

3

Further, we may sew the corresponding darts on the face boundaries together
such that their endpoints align to build the surface of the embedding’s genus,
which we earlier computed to be 1 for this example. While we eschew the
three-dimensional depiction, we depict the embedding in a 1-torus below by
representation on a rectangle where the opposite border edges are identified.

1

2

3

4 5

a

a

b b

From this, one may easily discern the faces we calculated and also envision
a 1-torus in three dimensions upon which the graph is embedded as given.

Since we know K5 is not planar and we know K5 can be embedded in a
surface of genus 1 as in Example 2.20, the minimum genus of K5 is 1. Applying
Theorem 2.14, then, K4 is 1-circular where each vertex is in the boundary.

More illustrative examples are bountiful but should be intently sought.

3 Drawing a Maximum Embedding
We employ the same definitions for maximum genus and upper-embeddable as
in Section 2. In addition, we specify our working definitions for the following
common concepts–notably, while matchings are usually considered on vertices
of a graph, we will define them on the edges.

Definition 3.1. A matching on a graph G is a set of edge pairs, called matches.
A given edge may be matched to itself, but may only be in one match.

15



Definition 3.2. An adjacency matching on a graph G is a matching such that
the edges in each match are adjacent in G.

Definition 3.3. A maximum matching on a graph G is a matching such that
no edge is unmatched.

We will now expand upon a few definitions from Section 2.

Definition 3.4. Let T be a spanning tree in a graph G that realizes the Xuong
deficiency of the graph as in Definitions 2.5 and 2.6 so that ξ(G,T ) = ξ(G).
Then T is a Xuong tree and G− T is a Xuong cotree.

Remark 3.5. With these terms now defined, one sees easily that the Xuong
deficiency of a graph is the number of odd connected components of any Xuong
cotree in the graph.

We now build up some definitions to a type of graph procedure that will be
used in the algorithm.

Definition 3.6. An edge neighbor of an edge e in a graph G is another edge e′
such that e and e′ are each incident to a common vertex.

Definition 3.7. Given a graph G, the auxiliary graph G′ is obtained by subdi-
viding each edge e of G. If e has endpoints u and v, e has n = deg(u)+deg(v)−2
edge-neighbors, so we append n− 1 vertices along e to subdivide e into n edges
in G′.

3.1 An Algorithm for the Drawing
Now, we present the algorithm that constructs a drawing of a maximum em-
bedding of a simple graph. Let a simple graph G on n vertices have a fixed
combinatorial orientation system and counter-clockwise rule established.

1. We label vertices and edges of G.3

2. We impose a maximum adjacency matching M on G. First match each
edge of G to an adjacent edge so that at most one edge is left unmatched.
Match this edge to itself (this will only occur if the edge count of G is
odd).

3. Now, we assemble the auxiliary graph G′ from G. Then label each edge
in G′ subdivided from e in G with two juxtaposed labels as follows. The
first label of each is that of the parent edge e. The second labels account
for the labels of each edge-neighbor in G of the parent edge e. So if edge
x has edge-neighbors y and z in G, we label the edges in G′ subdivided
from x as xy and xz in arbitrary order.

3The labels on vertices and edges of G here and later of G′ serve solely to demonstrate
that the matchings to follow are well-defined. In practice, we may omit such labels.

16



4. We establish a maximum matching M ′ on G′ such that edge with reverse
labels are matched. That is, xy is matched to yx.4

5. By trial-and-error5, we delete pairs of M ′ from G′ until G′ is acyclic.
At each deletion, we break as many cycles as possible–we keep track of
matches, as M ′ remains untouched.

6. Now we expand what remains of G′ into a spanning tree. Note that we
will not restore pairs of edges from G′, or else we create a cycle. So, we
restore at most one edge from each removed match. Once a spanning tree
is obtained, a minimum number of unpaired edges are left unrestored,
which is ensured by the efficiency (if improved) or rigor (by exhaustion)
of step 5.

7. If an edge originally in G′ that was subdivided from e is no longer in G′,
we delete the parent edge e from G, and it becomes a cotree edge in G.
If this missing edge in G′ is matched, the parent edge of its match also
becomes a cotree edge in G. These two cotree edges in G are thus paired
cotree edges. Otherwise, a cotree edge in G is unpaired.

8. We draw a one-face embedding of G, which is easily found since G is now a
spanning tree (further work will articulate taking what the present authors
call ’bad’ faces, corners, etc.).

9. We then restore paired cotree edges to G as follows. For paired cotree
edges x and y between u and v and between v and w respectively, we
restore x. We then restore y such that it exits the shared vertex v into
the face created by the restoration of x to which vertex w is not incident.
We add a handle to realize the restoration of y, which increases the genus
of the surface upon which we are working but also brings the face count
back down.

10. We then restore unpaired cotree edges in the obvious and simple way,
creating new faces.6 G is now embedded in a surface of its maximum
genus.

We will now exemplify the algorithm by drawing the maximum embedding
of a graph.

Example 3.8. We will construct a maximum embedding of the 2-to-1 graph,
drawn below with labels 1 to 6 on the boundary vertices and 7 to 9 on the
interior vertices.

4By our construction and labeling of the auxiliary graph G′ in step 3, this matching will
always be maximum.

5This step is the target for further work, which should aim to essentially find a Xuong
cotree. We suspect that in doing so, the auxiliary graph will no longer be a vestige as it
currently is.

6Notice that if more than one unpaired cotree edge is restored, then ξ(G) > 1 and G is not
upper-embeddable.

17



1

2 3

4

5 6

7

8

9

Below on the left, we denote a maximum adjacency matching (observe that
notation is abused but remains unambiguous since the matched edges must be
adjacent) on G.7 Below on the right, we construct the auxiliary graph G′ of G.

We now delete matched edges from G′ until G′ is acyclic. By the algorithm
description for step 3, recall that the order of the subdivided edges of G′ is
arbitrary, so in each pair, we delete each edge closest to its co-deleted edge. In
this way, we may still see evidence of the matches in the updated G′. For this
example, we delete matched edges in G′ corresponding to (2, 8) and (5, 8) as
well as (4, 9) and (6, 9) in G, as shown below on the left. After these two pairs
are removed, G′ is a spanning tree, so we need not add back any edges. We
translate this spanning tree G′ into a spanning tree of G below on the right.

7In this example, the maximum adjacency matching was made through trial-and-error
to ensure we easily find a maximum embedding. Until the algorithm presented earlier is
improved, some maximum adjacency matchings do not lead to a maximum embedding (as
will be shown in Example 3.9. However in this matching since the 2-to-1 graph has boundary,
we notice that the common vertex of each edge match is an interior vertex, and every interior
vertex is the common vertex of at least one edge match.

18



We now restore the paired cotree edges of G.
First working on the match (2, 8) and (5, 8), we restore the edge (2, 8) simply.

This creates a face f on the outside of the graph as drawn. Then when we restore
the edge (5, 8), it must exit vertex 8 into f . Thus we add a handle to connect
the edge to vertex 5 on any corner not touching f (in this case, 8 does not lie
incident to f , so we may enter on any corner). After the handle is added as
drawn below on the left, f is merged with the other face in the graph, returning
the face count of the embedding to 1.

Now we work on the match (4, 9) and (6, 9). We restore (4, 9) simply. This
creates a rectangle face f ′ with boundary [1–7–4–9–1]. Then when we restore
the edge (6, 9), it must exit vertex 9 into f ′. Thus we add a handle to connect
the edge to vertex 6 on any corner not touching f ′ (in this case, 6 does not
lie incient to f ′, so we may enter on any corner). After the handle is added
as drawn below on the right, f ′ is merged with the other face in the graph,
returned the face count of the embedding to 1.

We then proceed by restoring unpaired cotree edges, but this example of G
does not bear any, so we continue on.

Thus, we are done. The embedding drawn above on the right is indeed
a maximum embedding of the 2-to-1 graph, as desired. We notice that the
embedding bears a single face, so the 2-to-1 graph is upper-embeddable by
Definition 2.9.

19



3.2 Algorithmic Shortcomings
Example 3.9. We now present a bad matching on the 2-to-1 graph that under
the algorithm as given, results in an embedding of genus 1. This proves that
the algorithm needs adjustment, whether on the step of assigning the maximum
adjacency matching, the deletion of pairs, or the expansion of the pared-down
auxiliary graph to a spanning tree.

The maximum adjacency matching of G below on the left was found by
accident. We abbreviate the algorithm by showing the eventual spanning tree
on G below on the right.

As we construct the embedding, we restore one pair of cotree edges below
on the left and two unpaired cotree edges below on the right.

This results in three faces and a genus of 1. This would lead us draw the
false conclusion that the 2-to-1 graph is not upper-embeddable, but we know
that it is indeed upper-embeddable, as demonstrated by Example 3.8.

Further work will flesh out the inefficient facets due to the given simplifica-
tion of the cited algorithm.

20



4 Gauging the Circular Planarity of an Electrical
Network from its Response Matrix

4.1 Motivation
Up until this point, recovering graphs that are not circular planar has taken
much creativity. However there are many response matrices, regardless of the
original graph they were formed from, that could correspond to a circular planar
graph. In this section, we will lay out a proposed method to incorporate many
non circular response matrices into the circular planar case. We begin with a
known theorem from Curtis and Morrow [3].

Theorem 4.1. Suppose Λ is a matrix which satisfies the following properties.

1. Λγ is symmetric; this is, Λγ(i; j) = Λγ(j; i).

2. The sum of the entries in each row is 0.

3. For each circular pair (P ;Q) = (p1, . . . , pk; q1, . . . , qk),

(−1)k det Λγ(P ;Q) ≥ 0

Then there is a circular planar graph G, and there is a conductivity γ on G so
that the response matrix for the resistor network (G, γ) is Λ.

What this theorem tells us is that if we have a response matrix that sat-
isfies the proper determinental conditions, then there exists some recoverable
circular planar graph that corresponds. Suppose then, you are given an arbi-
trary response matrix. If you run the determinental conditions and they are
not satisfied, then the response matrix does not represent a circular planar
graph. However, remember that the response matrix is simply a Kirchhoff ma-
trix, where each row and column represents a boundary node of your graph.
Thus, by construction, permuting rows and columns is equivalent to permut-
ing boundary nodes. It is feasible, then, that some response matrices may not
correspond to any circular planar graph, but a permuted version of the matrix
does.

Permuting the boundary edges changes this graph from non-circular planar
to circular planar.

21



4.2 The 4 Boundary Vertex Case
Clearly there is a brute force algorithm to find such a permutation, or deter-
mine that one does not exist. However we begin here an exploration of more
efficient algorithms to determine if any circular planar permutation exists given
an arbitrary response matrix. We now theorize a specific case in which the first
two conditions from Theorem 4.1 imply the third.

Theorem 4.2. Given a response matrix Λ4x4 on four boundary vertices, there
exists an underlying circular planar graph G and conductivity γ on G such that
the response matrix for the resistor network (G, γ) is Λ4x4.

Proof. Let Λ4x4 be a response matrix with boundary vertices labeled 0, 1, 2,
and 3 in circular order. So Λ4x4 is symmetric and its row sums are zero.

Since there are four boundary vertices, we inspect circular pairs (P1;Q1) =
(0, 1; 3, 2) and (P2;Q2) = (0, 3; 1, 2). We inspect three cases on the signs of the
determinantal conditions.

(a) Both determinantal conditions are nonnegative.
By Theorem 4.1, there exists a circular planar graph G as required.

(b) Exactly one determinantal condition is nonnegative.
Without loss of generality, let det(P1, Q1) < 0 and det(P2, Q2) ≥ 0. Then
we have the following two inequalities.

λ0,3λ1,2 − λ0,2λ1,3 < 0

λ0,1λ3,2 − λ0,2λ3,1 ≥ 0

From these, we observe the following string of inequalities.

λ0,3λ2,1 = λ0,3λ1,2 < λ0,2λ1,3 = λ0,2λ3,1 ≤ λ0,1λ3,2 = λ0,1λ2,3

Then each λ0,3λ1,2 < λ0,2λ1,3 and λ0,3λ2,1 < λ0,1λ2,3 follow.
Since they are adjacent in the boundary ordering, we now permute vertices
2 and 3 so that our new determinantal conditions are λ0,2λ1,3 − λ0,3λ1,2
(1) and λ0,1λ2,3 − λ0,3λ2,1 (2). By the preceeding inequalities, both de-
terminantal conditions (1) and (2) are nonnegative. We then apply case
(a).

(c) Both determinantal conditions are negative.
Let det(P1, Q1) < 0 and det(P2, Q2) < 0. Then we have the following two
inequalities.

λ0,3λ1,2 − λ0,2λ1,3 < 0

λ0,1λ3,2 − λ0,2λ3,1 < 0

From these, we observe the following string of inequalities.

λ1,2λ0,3 = λ0,3λ1,2 < λ0,2λ1,3 = λ1,3λ0,2

22



Then λ1,2λ0,3 < λ1,3λ0,2 follows.
Since they are adjacent in the boundary ordering, we now permute vertices
0 and 1 so that our new determinantal conditions are λ1,3λ0,2−λ1,2λ0,3 (1)
and λ1,0λ3,2 − λ1,2λ3,0 (2). By the preceeding inequalities, determinantal
condition (1) is nonnegative. If (2) is negative, we then apply case (b);
else, if (2) is nonnegative, we then apply case (a).

Each case eventually reduces to case (a), which invokes Theorem 4.1. Hence,
we witness the circular planar graph G in all cases of the determinantal condi-
tions, as desired.

So given any 4x4 response matrix, there exists a some permuted response
matrix that is circular planar. Notice that this result is not intuitive. Consider
the following graph with four boundary vertices that geometrically cannot be
permuted to become planar.

4.3 The 5 Boundary Vertex Case
Because of the proof of Theorem 4.2, any subset of four boundary vertices can
be forced as circular planar. We can use this to our advantage to "untangle" a
subset of larger systems. We will start with the 5x5 case.

Theorem 4.3. For the 5x5 case, if a response matrix is not in a circular planar
order, then at least one 4x4 determinantal pair can be forced strictly positive.
In other words, four boundary vertices can be forced into circular planar order.

Proof. Assume a 5x5 response matrix is not in circular planar order. So there
exists at least one determinantal condition that is negative by Theorem 4.1.
This determinant will come from a subset of 4 vertices. By Theorem 4.2, we
can force this subset of four vertices into circular planar order. Notice that by
the proof of 4.2, both determinants will come out strictly positive. Thus for the
5x5 case, if a response matrix is not in a circular planar order, then at least one
4x4 determinantal pair can be forced strictly positive.

What this means is that if we are attempting to find a circular planar order-
ing of a given response matrix, we can "lock" four of the boundary vertices in
place from the very beginning. These vertices cannot be permuted with regard
to each other, or else their determinantal conditions would come out negative.
Once four of the vertices are locked in order, determining where to place the

23



last vertex, in the 5x5 case, can be determined simply from the 10 determi-
nants. Thus we arrive at the following algorithm to determine if a circular
planar ordering exists of a given 5x5 response matrix exists.

Run determinantal conditions of the matrix
If one comes out negative
Then permute the this determinant, along with it’s pair as laid out in Theorem
4.2
Begin to run determinantal conditions of the permuted matrix.
For each determinant coming from circular pair P=(a,b) and Q=(d,c)
If the determinant is positive, then the final ordering must be a, d, b, c or a, d,
c, b
Elif the determinant is negative, then the final ordering must be a, c, d, b or a,
c, b, d
Continue checking determinantal conditions
If a contradiction is reached of required orderings, then there is no permutation
that would correspond to a circular planar graph
Else all determinants run, and algorithm ends by choosing a circular planar
permutation

Notice that by this algorithm, not all determinants would need to be run.
All determinants would check only if it was already circular planar. Current
work is being done to create a program that will run this for any given 5x5
response matrix.

4.4 Extension to Larger Systems
As soon as we reach a system with 6 boundary vertices, there is a possibility of
3 connections. These would correspond to 3x3 determinantal conditions. Un-
fortunately, this means direct extention of the algorithm proposed for the 5x5
case is not sufficient. Even if all 2x2 determinants were satisfied by the previ-
ous algorithm, it is possible that a 3x3 determinantal condition is unsatisfied.
Geometrically, this poses an interesting open problem. What does it mean geo-
metrically if all 2x2 connections are positive, meaning no individual lines cross,
but a 3x3 determinant is negative? This question may hold the key to extending
the algorithm to higher cases. For an 8x8 case, there are then four connections
that must be satisfied, and for a 10x10 case, five connections to be satisfied.
Once geometrically understood, these may be able to speed up the algorithm
for higher cases.

5 Directions for Further Research
Another direction for algorithm improvement is to question necessity of adja-
cency in the matching. Can matches that lead to a Xuong cotree require the
edges in some match to not share a common vertex?

24



Look into seeking bounds on the deficiency ξ based on the maximum genus,
here notated by γM .

Code associated with the previous section and generating combinatorial ro-
tation systems from certain given faces (but not all) should be sought for rigor
and ease of conjecture development.

References
[1] O. Biesel and J. Eaton. Notes on multiple embeddings. University of Wash-

ington Mathematics REU, 2005.

[2] H. Y. Cheung, L. C. Lau, and K. M. Leung. Algebraic algorithms for linear
matroid parity problems. ACM Transactions on Algorithms, 10(3), 2014.

[3] E. B. Curtis and J. A. Morrow. Inverse Problems on Electrical Networks.
World Scientific, 2000.

[4] L. Deming and L. Yanpei. An efficient algorithm for finding an adjacency
matching of a graph. Journal of Northern Jiaotong University, 23(2), 1999.

[5] M. Furst, J. Gross, and L. McGeoch. Finding a maximum-genus graph
imbedding. Journal of the Association for Computing Machinery, 35(3),
1988.

[6] H. Gabow and M. Stallmann. Efficient algorithms for graphic matroid in-
tersection and parity. In Automata, languages, and programming: 12th col-
loquium, Nafplion, Greece, July 15-19, 1985, pages 210–220, 1985.

[7] Z. Geballe. How extra connections ruin the cut point lemma. University of
Washington Mathematics REU, 2006.

[8] N. Reichert. Generalized circular medial graphs. University of Washington
Mathematics REU, 2004.

[9] D. Hilbert and S. Cohn-Vossen. Geometry and the Imagination. American
Mathematical Society, 1952.

[10] C. Klumb. Discrete unsolvability for the inverse problem for electrical
networks. University of Washington Mathematics REU, 2011.

[11] B. Mohar and C. Thomassen. Graphs on Surfaces. Johns Hopkins Univer-
sity Press, 2001.

[12] A. Waldrop. Rotation systems and cellular imbeddings. University of
Washington Mathematics REU, 2011.

[13] N. H. Xuong. How to determine the maximum genus of a graph. Journal
of Combinatorial Theory, B(26), 1979.

[14] N. H. Xuong. Upper-embeddable graphs and related topics. Journal of
Combinatorial Theory, B(26), 1979.

25


